PDA

Ver la versión completa : Para los entendidos en Matematicas.



Darck_mario
09/06/2006, 19:16
He estado observando algunas tesis y materias de cursos avanzados de matematicas en Internet y en una universidad y me he encontrado con una rama del analisis avanzado que entre sus postulados basicos dice:

"Un infinitesimo es un numero, el cual se aproxima a... pero es difernte de .. y menor que.."

¿Locura o verdad? ¡Parece que regresamos a la epoca de Leibnitz y Newton con sus famosos infinitesimos no definibles a ciencia cierta.

http://www.uv.es/~ivorra/Libros/ANE.pdf

El analisis no estandar es una de las ramas mas extrañas de la matematica con las que me he topadfo.

Sobre todo porque esto induce a una geometrias diferencial no estandar, una teoria de conjuntos no estandar.

A pesar de las intertesantes aplicaciones que he visto (en calculo elemntal) del analisisi no estandar, dudo de que se tenga ese mismo exito en otras ramas de la ciencia estrechamente relacionadas con las matematicas.

Se soñó en los siglos XIX y XX con inventar unas matemáticas que dejarían cabida para los añorados números infinitos (grandes o pequeños).

La tentación era siempre añadir estas cantidades mal definidas al conjunto de los números reales, pero el problema era que se tenía entonces que averiguar si los teoremas vigentes en los reales eran o no válidos para los hiperreales. Y naturalmente, nunca se logró.

Porque no era el método adecuado.

La idea para salir de este callejón fue la siguiente: Para añadir los hiperreales, no hay que tocar la construcción de los conjuntos de números, sino el lenguaje lógico que sirve de fundamento para esa construcción.

Concretamente, se inventó un nuevo predicato unario: "estándar" y de ahí se presenta dos casos: un número x es estándar o no lo es.

Luego se impusó tres condiciones a este predicato (llamadas transferencia, idealización y estandarización) para asegurarse de la existencia de nuevos números, no estandares con las propiedades adecuadas, dignas de infinitesimales e infinitos. Toda una hazaña.

Veámoslo más en detalle:

Una propiedad o proposición es estándar si es clásica es decir que no requiere la palabra estándar o una de sus derivadas para definirse. Puede parecer paradójico, mas no lo es.

La propiedad de transferencia es la siguiente:

Si para cualquier x estandar, P(x) es cierto (P es una proposición estandar) entonces P(x) es cierto para cualquier x (sea o no estándar):

Está propiedad significa que todas la reglas clásicas, que son ciertas en las matemáticas usuales se generalizan (sin cambio) en los conjuntos no estándares. O sea, no hay que demostrarlos de nuevo. Por ejemplo, sea P(x) la proposición: x>0 y existe y tal que 0<y<x.

Sabemos que P(x) es siempre cierta en los reales usuales. P es además una proposición clásica (estándar). en consecuencia, P es válida también para todos los reales no estándares.

La propiedad de idealización es la siguiente: (con P una proposición estándar)

Si para todo x estándar existe un y tal que P(x,y) sea cierta, entonces existe un y tal que para todo x estándar, P(x,y) sea cierta:

Se ha permutado los x y los y, y el nuevo y es ideal en el sentido que funciona con todos los x.

Por ejemplo, tomemos el P anterior: P(x,y) significa: x>0 y 0<y<x. Sabemos que para cualquier x>o estándar, existe un y entre él y 0, por lo tanto debe existir un y ideal que sea siempre entre 0 y cualquier x>0 estándar. En otras palabras, existe un número distinto de cero pero inferior a cualquier real positivo. Este número es por definición un infinitesimal.

De la misma manera se demuestra que existen números infinitos (que no tienen nada que ver con los ordinales infinitos o los cardinales infinitos).

La propiedad de la estandarización es técnica, y de poco interés aquí.

Para ver el beneficio que se puede sacar del análisis no estándar, comparemos la expresión de la continuidad en el punto x:

Expresión clásica:

http://www.100cia.com/opinion/foros/attachment.php?attachmentid=486

http://www.100cia.com/opinion/foros/attachment.php?attachmentid=487

Expresión en análisis no estándar:

http://www.100cia.com/opinion/foros/attachment.php?attachmentid=488

http://www.100cia.com/opinion/foros/attachment.php?attachmentid=489

La fórmula no estándar resulta mucho más intuitiva y práctica. En general, los números hiperreales permiten suprimir muchos cuantificadores, es decir, bajar la complejidad de las fórmulas.

Darck_mario
10/06/2006, 16:53
Hola. ¿Ya entendieron? :mrgreen: ¿o voy a hacer otra discusioncita?

Darck_mario
12/06/2006, 21:11
Se aceptan criticas mordaces...no reply?

Darck_mario
16/06/2006, 18:33
Actualizo: el anlisi no estandar tiene relacion con las lgebras de Clifford (envienme mp si hay matematicos por aqui...! y les actualizo sobre esto.

salu2

(el material que proporcionaria es propiedad de Rafael Aparicio Sanchez, mis respetos para el !)

epicteto
20/06/2006, 14:37
Con todos mis respetos. He leido atentamente tu post, y creo que llevas razón en todo lo que dices, no ha quedado en mi, ni el más mínimo sentimiento de réplica...

Por tanto si tienes la gran amabilidad de ayudarme en cierto problema que he planteado en esta misma sección, te corresponderé ayudandote a encontrar algún matemático...

Lo mio como mi nik pertenece mas a la rama de filosofía...:-)

Darck_mario
20/06/2006, 19:34
Con todos mis respetos. He leido atentamente tu post, y creo que llevas razón en todo lo que dices, no ha quedado en mi, ni el más mínimo sentimiento de réplica...

Por tanto si tienes la gran amabilidad de ayudarme en cierto problema que he planteado en esta misma sección, te corresponderé ayudandote a encontrar algún matemático...

Lo mio como mi nik pertenece mas a la rama de filosofía...:-)


¿en donde..lo voy a buscar...?

Numerarius
17/10/2006, 01:15
Darck Mario, a mí me parece un tema apasionante la historia del análisis infinitesimal desde Leibniz hasta la actualidad.

Me gustaría conocer bibliografía sobre ese tema (da igual si es en inglés).

Muchas gracias.

Darck_mario
17/10/2006, 16:21
Conozco un lugar donde se encuentran e-books de Newton (en fascimiles), estaban en rincon matematico. Si ya no estan, vente a migui y aca te los paso por rapidshare.

Numerarius
18/10/2006, 00:50
Gracias Darck Mario. Yo busco más bien una Historia del cálculo desde Newton y Leibniz hasta la actualidad. Prefiero libros normales antes que electrónicos, para que no se me canse la vista. Yo suelo buscar libros en amazon, y luego los encargo a EEUU desde una librería. Este verano encargué dos de Leibniz. El rincón matemático ya lo conozco. Suelo postear ahí. Alguna vez ya he curioseado por los libros que tienen ahí buscando algo sobre Cantor.
Creo que también puede ser una buena idea preguntar en el foro de migui, como me aconsejas.

Saludos.